Advances and Challenges in Radiation Protection of Patients

Cardiovascular risks in radiotherapy

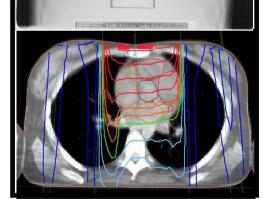
- Klaus-Rüdiger Trott
- University College London

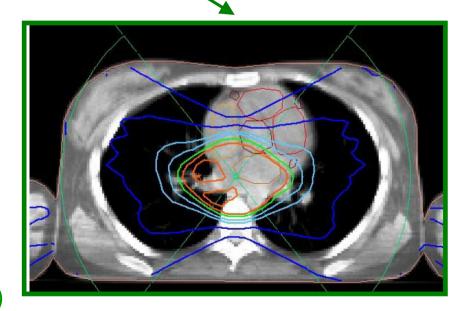
Death from cardiovascular disease in patients treated with radiotherapy for Hodgkin's disease Aleman et al., J.Clin.Oncol. 21:3431-3439 (2003)

Age at therapy	observed ex	pected RR	
< 20 (n=329)	6	0.4	15
21–30 (n=582)	18	2.5	7
31-40 (n=350)	21	4.3	5

Patients and methods: dose

reconstruction _{n=55} long-term survivors


Treatment period 1978-85


Mean age at time of treatment: 25 (6-49) years

60% RT alone, 40% RT + ChT

45% Canterior mantle field (mean dose 36.7 Gy)

33% anterior mantle field + (boost) mean dose 41.7 Gy)

(Vordermark et al., Radiat Oncol 2006)

Patients and methods: dose reconstruction

	Maximum dose to cardiac structure			
	MF n=26	MF+ROT n=18		
RV max	49 (23-58)	48 (43-58)		
LV max	46 (12-53)	45 (18-55)		
LA max	38 (18-46)	45 (36-49)*		
RA max	47 (21-55)	49 (42-57)		
RCA max	48 (22-56)	46 (40-56)		
LAD max	39 (9-55)	44 (16-50)		
LCX max	34 (16-43)	42 (19-46)*		

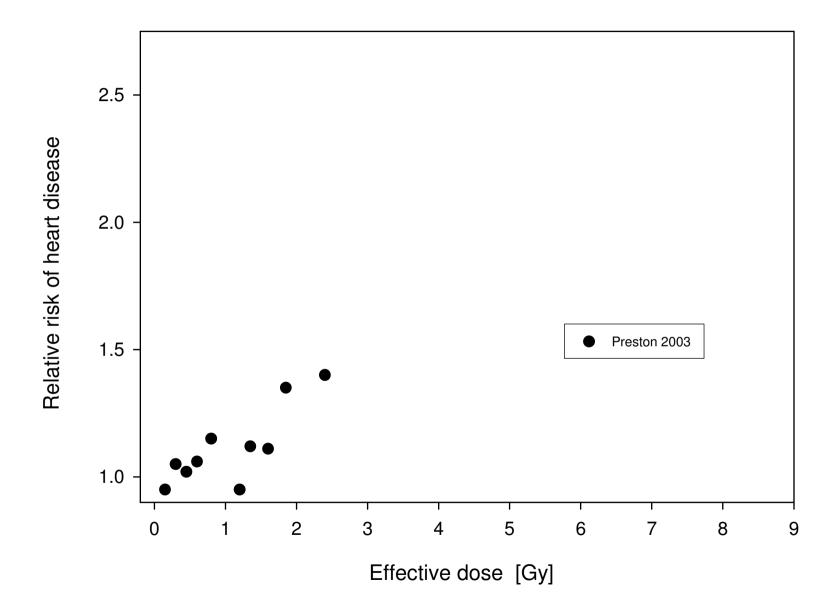
Results: overview of pathologic findings

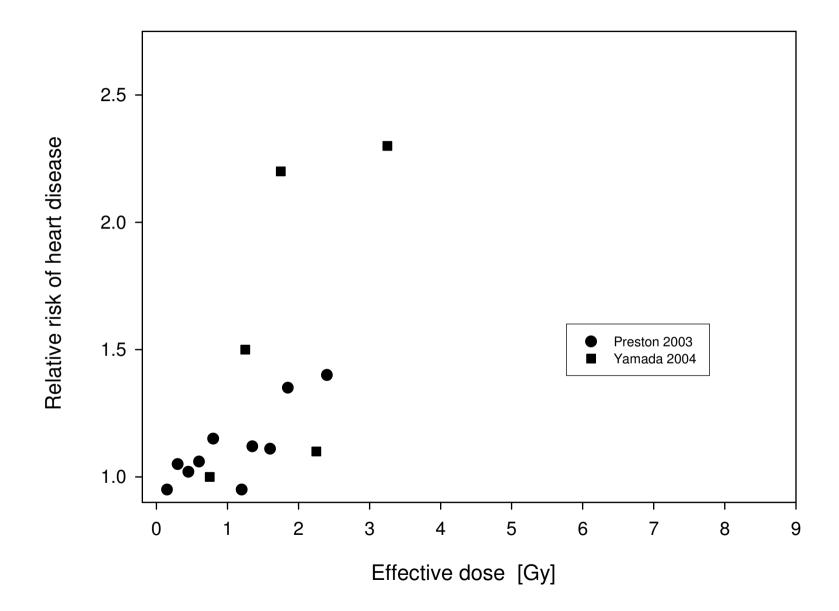
25 patients with complete MRI data

Perfusion deficit at rest	16/25 (64%)
Perfusion deficit under stress <u>only</u>	1/25 (4%)
Old infarction (,,late enhancement")	9/25 (36%)
Reduced ejection fraction (<55%)	7/25 (28%)
Valvular changes	8/25(32%)
Pericardial effusion	5/25 (20%)

A bomb survivors life span study Non-cancer mortality

Preston et al., Radiation Research 160:381-407 (2003)


Deaths 1968 - 1997


Deaths from non-cancer cause 14459

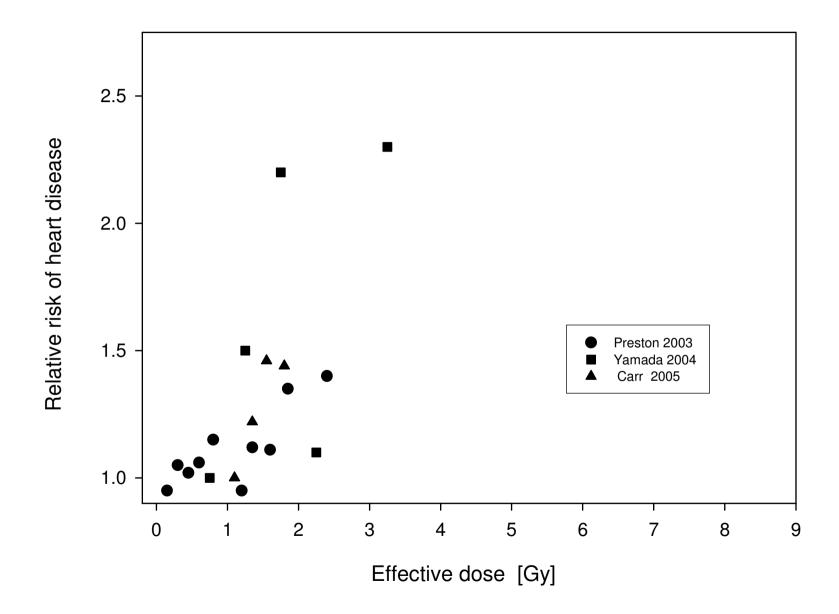
Deaths from heart disease 4477

Heart deaths attributable to

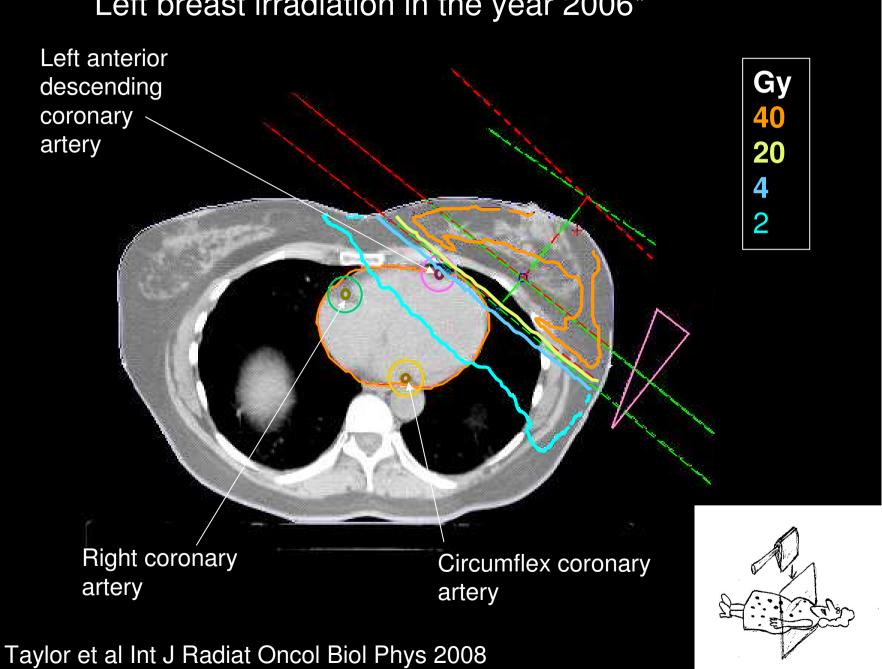
radiation exposure 101

Coronary heart disease after radiotherapy for peptic ulcer disease

Carr et al. Int.J.Radiat.Oncol.Biol.Phys. 61:842-850 (2005)


1859 patients treated with radiotherapyCompared with1860 patients treated with drugs

Doses to the stomach were 8 - 18 Gy in fractions of 1.5 Gy


Mean doses to the heart were 1.6 - 3.9 Gy in fractions of 0.33 Gy

Dose dependence of radiation-induced cardiovascular deaths Carr et al. 2005

dose	eqsd	patients	cv deaths	RR
0 Gy	0	1568	484	1.0
1.6 Gy	1.2	363	94	1.0
2.3 Gy	1.4	384	97	1.23
2.8 Gy	1.7	341	114	1.54
3.9 Gy	2.2	382	121	1.51

Left breast irradiation in the year 2006*

The risk of cardiovascular disease after radiotherapy Darby, S.C. et al. Lancet Oncology 6: 557-565 (2005)

Study design:

308,861 women included in the Surveillance, Epidemiology and End Results (SEER) programme who were treated for breast cancer between 1973 and 2001. 115,165 (37%) had received radiotherapy as part of primary treatment.

Endpoint:

dependence of death from cardiovascular disease on laterality of breast cancer.

Results:

- 1. Of those 4,130 women who died after >10 years, 1,721 (42%) died from breast cancer, but 894 (22%) died from heart disease.
- 2. Postoperative radiotherapy of left sided breast cancer was associated with a 44% higher risk of death from cardiovascular disease compared to right sided breast cancer.
- 3. Mortality from radiation-induced heart disease increased with time after radiotherapy.

SEER study by Darby 2005:

Results of the patient group with >20 years follow-up:

time after diagnosis years	cardiac deaths left right		mortality ratio	
< 5	230	180	1.19	
5 – 9	189	145	1.21	
10 – 14	157	106	1.42	
> 15	234	145	1.58	

There is, as yet, no convincing evidence that cardiovascular risk in the group treated in the eighties is reduced due to improved technique

Figure 1: Left- versus right-sided breast cancer: subsequent mortality ratios by radiotherapy status, cause, and years since diagnosis in 300 000 women with breast cancer and registered with the SEER cancer registries (based 17).

Years since	No radiotherapy		Radio	otherapy
breast cancer diagnosis	No. of deaths left/right	Mortality ratio left versus right & 95% CI	No. of deaths left/right	Mortality ratio left versus right & 95% Cl
Heart dis	ease dea	th		
< 5 years	2164/1972	1.03 (0.97-1.09)	700/633	1.04 (0.93-1.15)
5 - 9	1632/1479	1.05 (0.98-1.13)	521/442	1.10 (0.97-1.25)
10 - 14	806/758	1.01 (0.91-1.11)	281/197	1.37 (1.14-1.64)
15+	568/524	1.02 (0.91-1.15)	254/162	1.53 (1.25-1.86)
All other	known ca	nuses		
< 5 years	14775/13522	1.04 (1.01-1.06)	6911/6516	1.01 (0.98-1.05)
5 - 9	8009/7863	0.97 (0.94-1.00)	3178/2990	1.01 (0.96-1.06)
10- 14	3472/3343	0.99 (0.94-1.04)	1165/1095	1.01 (0.93-1.10)
15+	2106/2040	0.98 (0.92-1.04)	611/560	1.04 (0.93-1.17)

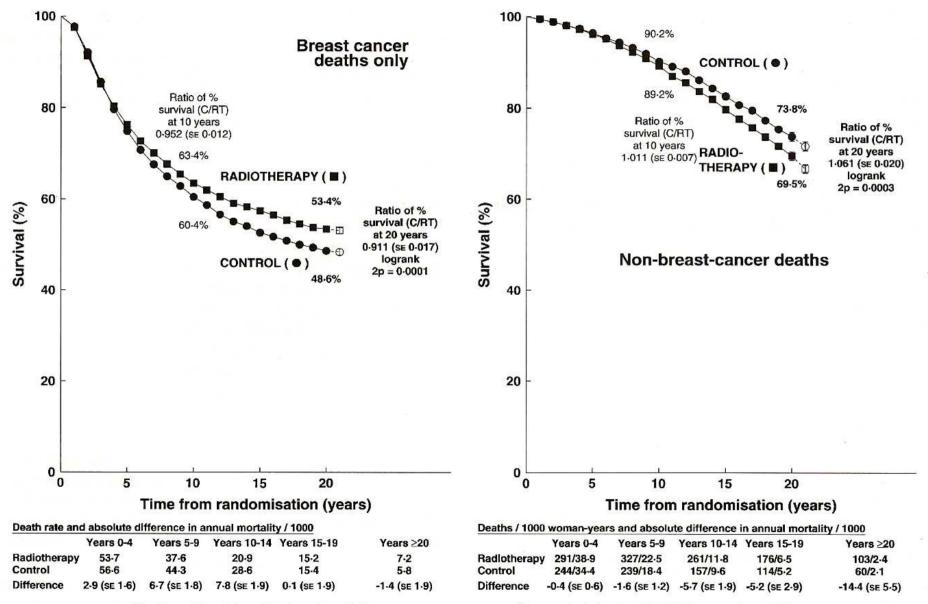
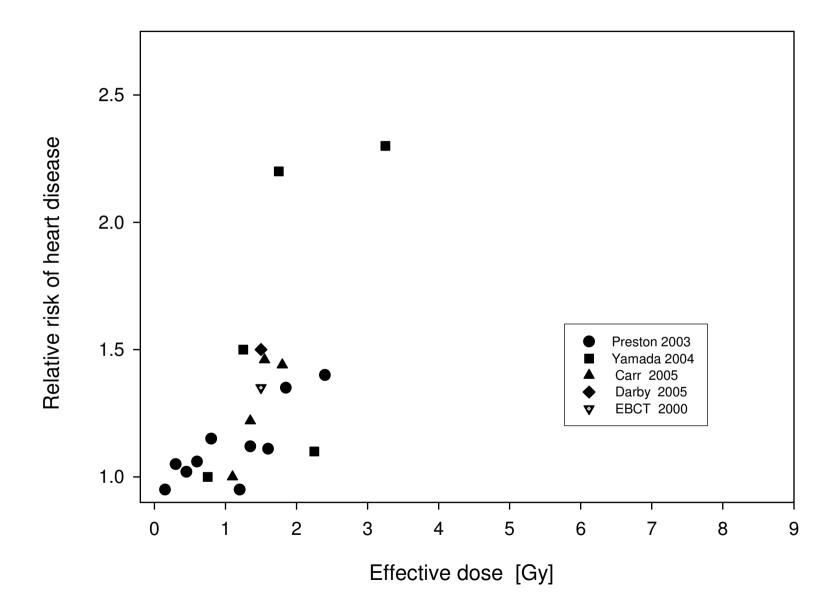



Fig. 2 — Absolute effects of radiotherapy on cause-specific survival in the EBCTCG overview [15].

<u>Hypothesis 1</u>: Radiation increases the frequency of myocardial infarction by interacting with one or more steps of the pathogenic pathway of age related coronary artery atherosclerosis.

Hypothesis 2: Radiation increases the lethality of myocardial infarction, which may occur due to pathologies unrelated to radiation, i.e. by reducing the organ tolerance to minor acute infarctions as a result of persistent or progressive reduction of the microcirculation in the irradiated heart.

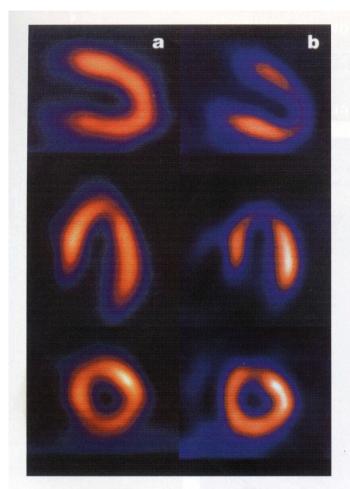


Fig. 3. Horizontal, vertical and short axis views of (a) a normal myocardial perfusion imaging study in a patient treated with right breast radiotherapy, and (b) an abnormal study showing decreased tracer uptake restricted to the cardiac apex in a patient treated with left-breast radiotherapy.

The incidence and functional consequences of radiotherapy associated cardiac perfusion defects

Marks LB et al Int J Radiat Oncol Biol Phys 63: 214-223, 2005

Method:

prospective trial, 114 breast cancer patients enrolled between 1998 and 2001. SPECT cardiac perfusion scans performed before radiotherapy and 6, 12, 18, and 24 months after radiotherapy. The incidence of new perfusion defects related to the dose distribution in the heart.

Conclusion:

"The present study demonstrates that radiotherapy induced cardiac dysfunction is a potentially widespread clinical problem, despite modern radiation techniques."

Open questions:

Is there a dose threshold of increased risk? Does the latency to clinical manifestation depend on dose as is suggested by experimental data?

What is the clinical nature of cardiovascular disease induced by different radiation doses and dose distributions to the heart?

Is the pathology after low radiation doses different, or the same but developing more slowly, compared to that after high radiation doses?

Which part of the heart is most radiosensitive and should be chosen as a reference point for tolerance doses in radiation oncology or for effective dose to be corrected with an organ weighting factor in radiation protection?

The current European research project RACE aims at solving the following questions:

What is the nature of radiation-induced heart disease after radiotherapy?

Which and where is the critical target in the heart of radiotherapy?

How should the heart dose be specified from treatment plan optimisation?

How does the risk of very late cardiovascular radiation damage depend on the dose to the critical target structures in the heart?

RACE Case-Control Study

Cases: irradiated women who developed heart disease

Controls: irradiated women who did not develop heart disease

-1000+ cases of breast cancer

-Controls matched for: country

age at diag (±1 year)

calendar period (5 years)

RT status

- -Individual medical and radiotherapy information
- -Detailed dose estimation
- -Sweden, Denmark
- -Objective: Dose response relationship for use in evaluating risks from current and planned treatments
- -Funding: EC 6th Framework, CTSU, other

Case-case study

Population:

Denmark

Sweden

Cases = women irradiated for breast cancer who develop coronary heart disease prior to any recurrence of their breast cancer.

Aims:

- Association between type of coronary heart disease and radiation dose?
- Association between the spatial damage to the heart and anatomical distribution of radiation dose?
- Which cardiac structures are the most sensitive to radiation dose?

The European Research project CARDIORISK aims at solving the following problems:

Is very late cardiovascular radiation damage caused by radiation damage to the coronary arteries or to the microvasculature?

Which radiation-induced changes in endothelial cell function is responsible for very late cardiovascular radiation damage?

What is the role of inflammation and of the immune response in the pathogenesis of very late cardiovascular radiation damage?

Can progressive very late cardiovascular radiation damage be mitigated by early post-radiotherapy pharmacological intervention?

Methods used in CARDIORISK:

Functional imaging of the microvasculature of the heart and the vascular patency of the irradiated arteries

Histopathological investigations. The main criterion in the hearts will be the microvascular density and evidence for focal hypoxia in relation to the changes observed by functional imaging.

Ex vivo investigations of the irradiated arteries. **In vitro investigations**. Endothelial cells will be isolated from irradiated hearts and, in the pilot experiments from repair blastemas, at different times after local irradiation.

Proteomics

Open questions

- Where is the critical structure where the dose in the heart has to be calculated?
- Does cardiovascular risk increase with dose after a threshold dose or without?
- Does the latency depend on dose?
- Does the risk depend on age at exposure?
- Which cardiovascular disease is caused by low and medium radiation doses?

The end

Summary: Aims of CTSU research program

- •Examine cardiac incidence and mortality leftsided vs right-sided in women irradiated for breast cancer
- Derive dose-response relationships for radiation-induced heart disease
- Study the relationship between location of cardiac damage and spatial distribution of radiation dose to the heart

Radiation Associated Cardiac Events Objectives: (RACE)

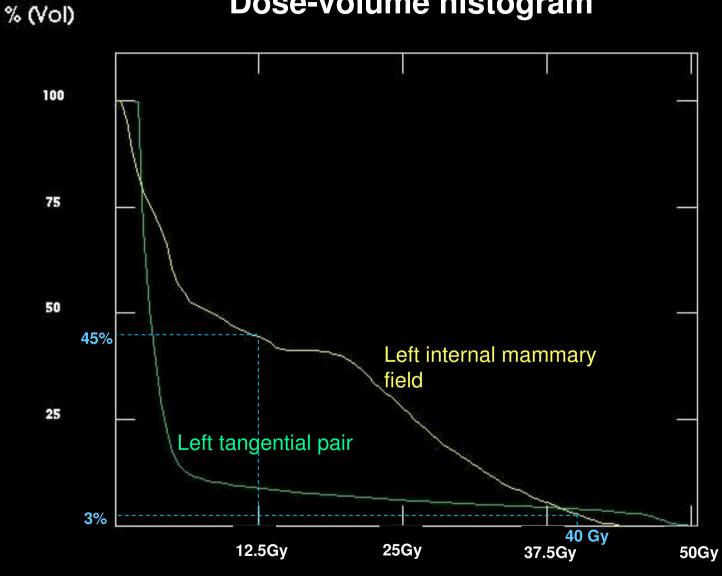
- Derive dose-response relationships for radiation-induced heart disease
- Study the relationship between location of cardiac damage and spatial distribution of radiation dose to the heart

Collaborators:

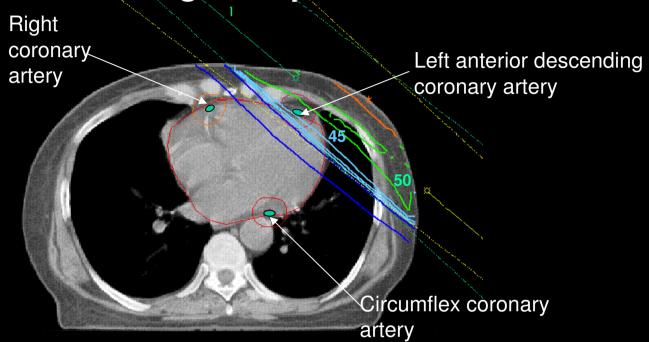
- CTSU: Sarah Darby, Paul McGale, Richard Peto, Kazem Rahimi, Carolyn Taylor
- Royal Surrey County Hospital: Andy Nisbet
- Karolinska Institute: Per Hall, Anna Bennet, Giovanna Gagliardi, Bruna Gigante, Ulla Goldman
- University of Aarhus: Marianne Ewertz
- Danish Breast Cancer Collaborative Group: Maj-Britt Jensen

Ongoing and planned research on radiation-induced heart disease in radiotherapy

Measurement of microvascular perfusion changes and their relation to anatomical radiation dose distribution in the heart


Case control studies on the relation of cardiovascular disease to radiation dose distribution (RACE)

Cardiovascular risk after occupational exposure?


•	Cohorts investigated:	result	author
•	Uranium miners	-	Kreuzer, 2006
•	Chernobyl liquidators	+?	Ivanov, 2006
•	Sellafield nuclear workers	+	McGeoghegan
•	Mayak nuclear workers	+	Muirhead 2008

Left breast irradiation Left anterior Gy 40 20 descending coronary artery 4 2 Right coronary Circumflex coronary artery artery Taylor et al Int J Radiat Oncol Biol Phys 2008

Estimation of cardiac doses: RACE Dose-volume histogram

Target	Field arrangement	Beam energy	Typical dose	Mean dose (Gy)			
				Heart	LAD	RCA	Circ
Left chest	Tangential pair	6MV	50 Gy in 25	5	22	2	3
wall/ breast		Co-60	50 Gy in 25	5	22	2	3
		250 kv	42 Gy in 20	14	51	11	8

Taylor et al. Int J Radiat Oncol Biol Phys (2007)