Information Notice

Technical clarifications concerning the manufacturing anomalies on the Flamanville EPR reactor pressure vessel

1 The EPR reactor pressure vessel upper and bottom heads

The reactor pressure vessel (RPV) of an EPR NPP consists of a vessel body capped by an upper head. The upper head comprises a spherical dome which is assembled to a head flange by welding. This dome comprises 107 penetrations for the control rod mechanisms, in-core instrumentation and vent tube. Its outside diameter is 4.72 m and its thickness 23.2 cm.

The vessel body comprises a welded assembly of the RPV bottom head and the cylindrical parts. For the EPR reactor, this RPV bottom head is not penetrated by the in-core instrumentation, unlike the previous reactors in the French NPP fleet. The outside diameter of this bottom head is 4.675 m and its thickness 14.7 cm.

For the Flamanville EPR NNP, the RPV upper and bottom heads were manufactured by Creusot Forge, which is today a subsidiary of the Areva group, from a crushed and then dished steel ingot.

2 The essential safety requirements concerning the mechanical properties of the materials

Decree n°99-1046 of 13th December 1999 concerning pressure equipment requires that “The materials intended for the pressurised parts shall […] in particular be sufficiently ductile and tough”. Being ductile means being able to deform without breaking, in this present case, under the loads due to the pressure. Being tough means being able to withstand the propagation of a crack under mechanical stress. These
requirements are considered to be met if the properties of the materials are higher than the minimum values stipulated in the Decree. A manufacturer may however decide not to comply with these values if it can demonstrate that alternative measures have been taken to obtain an equivalent overall level of safety.

For the nuclear pressure equipment most important for safety, such as the main primary and secondary circuits of nuclear reactors, the 12th December 2005 Order on nuclear pressure equipment (“ESPN order”) sets most restrictive values.

Compliance with these values is verified by means of destructive testing (tensile tests and Charpy impact tests) performed on sacrificial parts.

3 **RPV upper and bottom heads steelmaking process**

The Flamanville EPR RPV upper and bottom head were manufactured in September 2006 and January 2007 respectively by Creusot Forge.

Creusot Forge used the same process for the RPV upper and bottom heads, except the final thickness obtained after machining being different. The steelmaking process consists in crushing a conventional vacuum-poured forging ingot of 156 tonnes to obtain a disk with a useful thickness of about 450 mm. This disk is heat treated and then dished to obtain a spherical dome 330 mm thick.

The ends of the ingot contain high concentrations of undesirable elements such as carbon, which can degrade the mechanical properties of the steel. The manufacturing process should normally eliminate these zones.

4 **The results of the technical qualification tests performed by Areva on the RPV heads of the Flamanville EPR NPP.**

In September 2012, Areva submitted a proposal to ASN for performing destructive tensile and toughness tests on the RPV upper head, which was initially intended for another EPR project. Areva justified this choice by the fact that the two technical manufacturing programmes were comparable.

Areva carried out mechanical tests in representative zones, giving impact resistance values of between 36 J and 64 J, with an average of 52 J, which is lower than the regulation limit (60 J).

Areva also measured the carbon content of a central core sample taken from this vessel head, which revealed a higher than expected carbon content (0.30% as opposed to a target value of 0.22%).

5 **The future test programme**

The tests performed so far point out deficient manufacturing quality control, with an impact on the mechanical properties of the materials. Areva is required to demonstrate that the phenomena in question on the RPV upper and bottoms head of the Flamanville EPR NPP are clearly identified, controlled and do not affect other areas of these components than those identified.

ASN will make a decision on the test programme, check that it is correctly implemented and examine the file to be presented by AREVA demonstrating the robustness of the Flamanville EPR reactor.

1 Impact resistance is the ability of a material to absorb energy under the effect of an impact. In the case of a reactor pressure vessel, this property is in particular important for withstanding thermal shocks, for example following the injection of cold water into the reactor coolant system.
pressure vessel. It will in particular call on the services of its technical support organisation, IRSN, and the Advisory Committee of Experts for Nuclear Pressure Equipment.

6 Exchanges with foreign nuclear safety regulators

ASN has informed its counterparts in other countries concerned by the construction of an EPR. Some of the RPV heads for the Taishan 1 and 2 reactors (China) were manufactured by Creusot Forge using a process similar to that used for the Flamanville EPR reactor pressure vessel. This is not the case with the RPV heads for the EPR in Olkiluoto, which come from another supplier.